Catalyzed alanates for hydrogen storage
نویسندگان
چکیده
منابع مشابه
PERFORMANCE OF AB, ALLOYS FOR HYDROGEN STORAGE AND HYDRIDE ELECTRODES
Two types of hydride electxodes are potential candidates to replace the Cd elecsode in NilCd batteries, One is of the A type where A is a rare earth metal or mixture thereof, and B is the transition metal. The other is commonly referred to as A type. A , type alloys with partial substitution of the B element in A type hydride material (Ovonic) with Co, Mn, Al, and Fe were studied (A compo...
متن کاملIridium-catalyzed dehydrogenation of substituted amine boranes: kinetics, thermodynamics, and implications for hydrogen storage.
Dehydrogenation of amine boranes is catalyzed efficiently by the iridium pincer complex (kappa (3)-1,3-(OP ( t )Bu 2) 2C 6H 3)Ir(H) 2 ( 1). With CH 3NH 2BH 3 (MeAB) and with AB/MeAB mixtures (AB = NH 3BH 3), the rapid release of 1 equiv of H 2 is observed to yield soluble oligomeric products at rates similar to those previously reported for the dehydrogenation of AB catalyzed by 1. Delta H for ...
متن کاملComplex Hydrides for Hydrogen Storage
Complex hydrides, containing a minimum of 7.5 wt% hydrogen, are being investigated as hydrogen storage compounds for automotive use. As a new project, the work to date has largely involved refurbishment of equipment and acquisition of study materials. Initial experiments have confirmed that the instrumentation is functioning and that the data being obtained agree with that in the literature. In...
متن کاملClathrate hydrogen hydrate--a promising material for hydrogen storage.
Hydrogen is viewed as a promising clean fuel of the future. A low-cost hydrogen storage technology that provides a high storage capacity and fast kinetics is a critical factor in the development of a hydrogen economy for transportation. The technologies to store hydrogen can be classified into three types: compression, liquefaction, and storage in a solid material. 2] Compressing hydrogen requi...
متن کاملHydrogen evolution catalyzed by cobaloximes.
Natural photosynthesis uses sunlight to drive the conversion of energy-poor molecules (H(2)O, CO(2)) to energy-rich ones (O(2), (CH(2)O)(n)). Scientists are working hard to develop efficient artificial photosynthetic systems toward the "Holy Grail" of solar-driven water splitting. High on the list of challenges is the discovery of molecules that efficiently catalyze the reduction of protons to ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Alloys and Compounds
سال: 2002
ISSN: 0925-8388
DOI: 10.1016/s0925-8388(01)01586-9